DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts
نویسندگان
چکیده
Escherichia coli DNA polymerase IV (Pol IV, also known as DinB) is a Y-family DNA polymerase capable of catalyzing translesion DNA synthesis (TLS) on certain DNA lesions, and accumulating data suggest that Pol IV may play an important role in copying various kinds of spontaneous DNA damage including N(2)-dG adducts and alkylated bases. Pol IV has a unique ability to coexist with Pol III on the same β clamp and to positively dissociate Pol III from β clamp in a concentration-dependent manner. Reconstituting the entire process of TLS in vitro using E. coli replication machinery and Pol IV, we observed that a replication fork stalled at (-)-trans-anti-benzo[a]pyrene-N(2)-dG lesion on the leading strand was efficiently and quickly recovered via two sequential switches from Pol III to Pol IV and back to Pol III. Our results suggest that TLS by Pol IV smoothes the way for the replication fork with minimal interruption.
منابع مشابه
DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1.
To ensure proper replication and segregation of the genome, eukaryotic cells have evolved surveillance systems that monitor and react to impaired replication fork progression. In budding yeast, the intra-S phase checkpoint responds to stalled replication forks by downregulating late-firing origins, preventing spindle elongation and allowing efficient resumption of DNA synthesis after recovery f...
متن کاملCtIP mediates replication fork recovery in a FANCD2-regulated manner.
Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Within the FA pathway, an upstream FA core complex mediates monoubiquitination and recruitment of the central FANCD2 protein to sites of stalled replication forks. Once recruited, FANCD2 fulfills a dual role towards replication fork recovery: (i) it cooperates with BRCA2 and RAD51 to prote...
متن کاملCharacterization of the Replication Rate and Intermediates Produced Following Hydroxyurea treatment in Escherichia coli
In order to reproduce, all cells must duplicate their genomes accurately. Active replication forks encounter impediments such as DNA adducts, strand breaks, bound proteins, or secondary DNA structures that impair their ability to duplicate the DNA. UV-irradiation causes DNA damage that arrests replication forks and induces distinct intermediates during the recovery process. However, less is kno...
متن کاملMms1 and Mms22 stabilize the replisome during replication stress
Mms1 and Mms22 form a Cul4(Ddb1)-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101(Mms1/Mms22) ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to proper...
متن کاملBoth DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently.
Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014